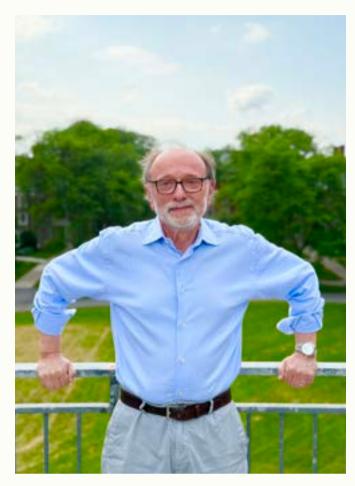
2025

Euclid to Einstein Scholars

June Newsletter

OUR SCHOLARS

Jeffery Gong Nick Lucana Dwyer Illick Sia Reddy Crea Kibar Anya Reppa Remy Lee Zach Rozanski Philip Lee Julian Zhang Minnie Li Mark Zhu


OUR INSTRUCTORS

Luc Barrett Alexander Ginzburg Mika Misawa

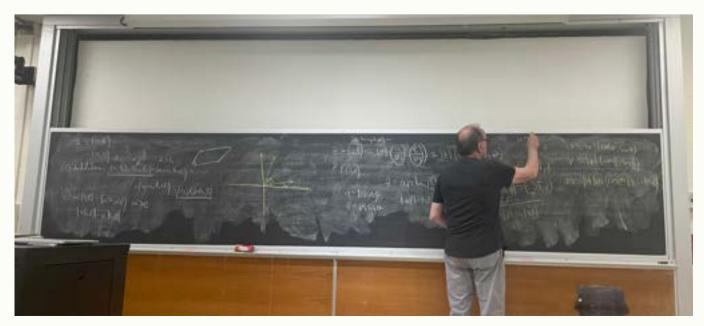
TABLE OF CONTENTS

Letter from Mr. Ginzburg	2
Archival Research	3
Theory & Insight	4
Residential Life	5
Projects	6
Special Events	12
Guest Speakers	13
Presentations	14

A Letter from Mr. Ginzburg

Dear Friends of the Euclid to Einstein Scholars Program,

This June was the inaugural run of the Euclid to Einstein program at Cornell. The university is known for its outstanding library collections in many disciplines, including (and especially!) mathematics. After much planning beforehand, we found ourselves on the beautiful campus in Ithaca, ready to do our work. But what is our work? First and foremost, we came to do research on the leading mathematicians and physicists of the past. Each student had picked a mathematician or a physicist whose life and work they wanted to study. We knew that Cornell libraries were outstanding. But as our work progressed, we began to realize just how spectacular Cornell libraries actually are. In addition to having full access to the math library, which seems to have every book on math over the last century, we also had access to Cornell's Rare Books and Manuscripts Collections. Original editions of works by Newton, Euler, Descartes, Viète, and many others were made available for us as well as English translations of many foundational works originally published in Latin. We were thrilled to


volumes that paved the way for the wonderful engagement with us, and, Scientific Revolution which shows needless to say, we look forward to no signs of slowing down.

We received a very warm welcome from the library teams and professors of Cornell's mathematics department. Everyone here was looking for ways to make our stay more enjoyable and productive. Head of the Math Library, Henrik Spoon, looked invented" Complex Numbers, and after us, and checked in daily to see if everything was going well, helping students along the way (for example, by effortlessly producing the original volumes of world-famous Feynman's Lectures on Physics, delivered when Richard Feynman, a Nobel Laureate in Physics, was a professor them, we proved that a straight line at the Cornell's Physics department). Several professors from the Mathematics department came to speak believe, but mathematicians get exwith us about their work. Professor Lionel Levine spoke about AI, Large Language Models, and their power and pitfalls. Professor Moon Duchin It has been a challenging, busy, and delivered a fascinating talk about her productive visit. I look forward to research on how to draw electoral districts to achieve a fair outcome. to reconnect with our Cornell col-She is a leading expert on this subject and highly sought-after expert life and work of outstanding mathewitness at the state and federal level. Professor Timothy Riley spoke about Big Numbers. And Professor us today would not exist had it not Tara Holm, head of the Mathematics Department, welcomed us on hard work. our first Monday morning, giving us an overview of how the department Sincerely, functions, and a tour of the campus. Mr. Ginzburg

hold in our hands these magnificent We cannot be more grateful for their continuing our relationship.

> The second goal of our Cornell visit was to learn more mathematics. We held daily classes on a variety of topics necessary for the History of Math and Physics course. We explored Vectors and Matrices, (re)"learned Taylor Series expansion and the famous Euler's formula. Then we explored Linear Ordinary Differential Equations, Partial Differential equations, and Calculus of Variations, finishing with the foundational Euler-Lagrange equations. Using truly is the shortest path between any two points on a plane (hard to cited about proving these "obvious" things!).

> our stay next year. It will be great leagues, and continue to explore the maticians and physicists of the past. Just about everything we see around been for their genius, foresight, and

Research at Malott, Uris, & Olin

An essential aspect of the Euclid to Einstein Scholars Program was the incredible opportunity to conduct archival research on our luminaries at Cornell's mathematics library, Olin Library, Uris Library, and the Rare Books and Manuscripts Collections. These libraries offered us special access to the original texts, old biographies, complex diagrams, and centuries-old manuscripts that brought our research to life.

At 9 a.m. each morning, we gathered in the The experience not only deepened our underand digital sources. With the guidance and support of Cornell's experienced and skilled librarians—who helped us navigate the catalog, locate materials, and handle fragile manuscripts—we delved into original and supporting work of our chosen mathematicians and physicists. The Rare Books and Manuscripts Collections houses thousands of rare and important mathematical and scientific volumes and manuscripts—works that some of us uti-

lized in our independent research. We were especially excited by the opportunity to conduct research on the original works of famed mathematicians, such as Euclid's Elements or Newton's Notebook, and we spent countless hours analyzing delicate diagrams, studying marginalia, deciphering symbols, and uncovering the influence of social and cultural context on the development of our luminaries' work.

reading room, surrounded by shelves of books standing of the work we were studying, but reminded us of an important lesson: mathematics and physics are far more than formulas and numbers—they are a living history of ideas passed down and reshaped over several generations. The opportunity to work with such rare works added depth to our research, and we are especially grateful to the dedicated librarians who made this opportunity possi-

Theory & Insight

Mika Misawa Residential Assistant

Each afternoon, following our work in the archives and lunch at Cornell, we would transition to math classes that spanned three hours. We began with mathematical induction, through which we learned to build mathematical arguments that held true for infinitely many cases. The class was taught by resident assistant and mentor Mika Misawa, a recent Cornell graduate with a double major in mathematics and philosophy. Furthermore, during our class on induction, we were introduced to "cake numbers"—the maximum number of regions a cube can be divided by n planes. From there, the concepts we learned grew larger and more complex. Luc Barrett, an incoming Cornell PhD student in physics, and Mr. Ginzburg taught us many topics including: Taylor series expansions, calculus of variations, hyperbolas, linear differential equations, functionals, Fermat's Principle, partial differential equations, complex numbers, and the foundations of Linear Algebra.

Through studying calculus of variations, we were taught how to find functions that minimize certain values—a tool with many applications to engineering and physics. Later topics added depth to our mathematical understanding, and we were consistently amazed by how the concepts connected to one another and to the physical world.

Some of the most thrilling moments arose when we were taught how to apply the abstract ideas we had learnt in

previous lessons to real-world problems. In one class, we used partial differential equations to calculate how heat moves across a rod, allowing us to predict physical phenomena with precision and accuracy. Furthermore, we used partial differential equations, functionals, chain rule, and integration by parts to work through the logic behind why a straight-line segment is truly the shortest path between two points. It is interesting how complex the logic behind such a basic fact is, and often we take these "simple" mathematical facts for granted. Looking back, Euler's formula stands out as one of the most pleasing results we encountered as it links exponentials, trigonometry, and complex numbers in an almost unimaginable way.

Beyond daily classes, our learning extended to evening study halls where we worked collaboratively, along-side teaching assistant Luc Barret, on problem sets that pushed us to apply the concepts we learned and solidify our understanding. The evening sessions were difficult but rewarding, allowing the scholars to develop creative strategies to walk through rigorous math problems.

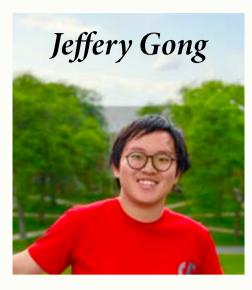
By the end of the two weeks, Scholars came away with new mathematical knowledge, along with a deeper appreciation for how mathematics reveals much of the structure of the world around us.

Life at Court-Kay-Bauer

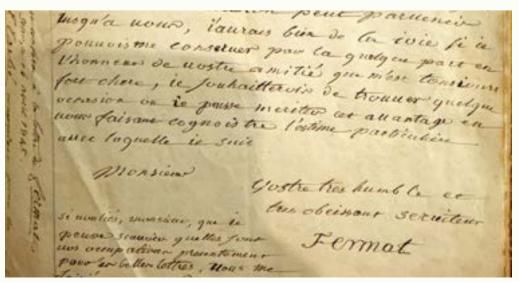
Life in Court-Kay-Bauer hall—one of the way, turning competitive as people would many residential buildings on Cornell's North dive for the ball, hoping to outplay each oth-Campus—was one of the most memorable er. Even more, the common room was always and meaningful parts of our time at Cornell. full of energy, with people engaging in intense Outside of class, scholars found many ways games of pool, ping pong, and just hanging to relax, have fun, and—most importantly—out. bond with each other. On many evenings after classes, we would head to the beach volley- One of the best parts of dorm life was learnball courts. Despite many of us not knowing ing new card games together. Whether it was how to play volleyball prior to our time in the Chinese Break the Egg, President, or Bluff, lowed us quickly to learn, and games ended teaching others, playing, and laughing. While with plenty of laughs. It became a tradition to we had attended school with each other for Jam" playing in the background.

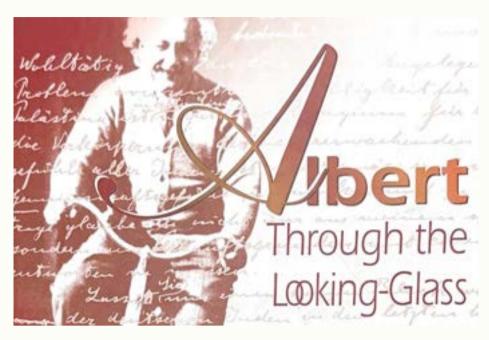
Inside the dorm, there was never a dull mo- to continuing in our Senior year. ment. Spikeball games popped up in the hall-

program, several hours spent at the courts al- there was often a group of students at the table gather on the bridge to watch the sunset—or, the past few years, these small moments in on occasion, the sunrise—with our "Spotify the dorm—sharing snacks, telling stories, and playing games—allowed us to create tightknit, lasting friendships that we look forward



Notes From Our Scholars

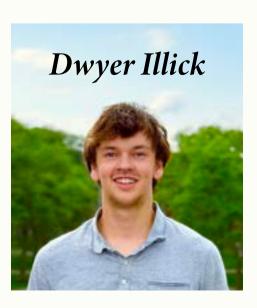


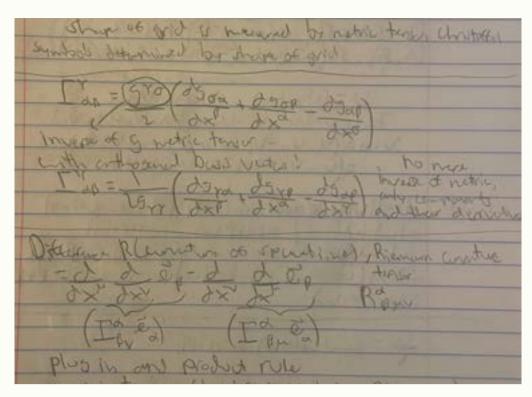

Tracing Mathematical Lineage

Pierre de Fermat was, as his biographer puts it, "a judge by profession, a mathematician by passion." I was fascinated at first by his last conjecture (now theorem) and how an amateur who rarely published could still launch entire fields of mathematics. At the Rare Books and Manuscripts Collections, I came across three separate restorations of the same book by Apollonius of Perga, a foundational figure in ancient Greek geometry. One of these restorations was by Fermat himself. Seeing how different mathematicians over centuries reconstructed and reinterpreted the same clas- mathematical thinking. sical text offered a window

into the evolution of scientific thought. Alongside this, I reviewed Fermat's complete works, a supplement volume, a physics treatise, and a German edition on his maxima and minima methods. These showed how his technique of adequality anticipated core concepts of calculus.

To continue my research, I turned to Mahoney's Career of Fermat, Devlin's Unfinished Game, and Singh's Enigma, which helped me understand how Fermat's ideas bridged ancient geometry and modern analysis. Looking ahead, I hope to explore how Fermat's methods influenced later developments in calculus and mathematical proof, especially through his correspondence with Pascal and Wallis. During the spring course, I plan to translate key Latin excerpts and analyze how his approach, such as that to the concept of "adequality," reflects a period of transition in



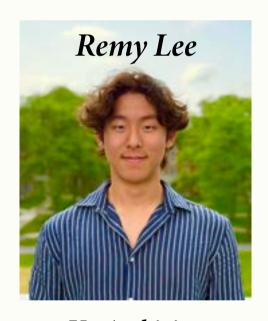


Einstein's Science and Society

I've always heard about ativity, Einstein resolved wanted to spend some time conception at Cornell tell the story of contributions. how this impressive scientific feat was met by an unfortunate, antisemitic resistance to his ideas. The quality of his ideas eventually overcame this injustice, as experimental evidence proved him right in 1919, and later, his ideas earned worldwide acceptance. With General Rel-

Einstein's amazing scien- the lingering problems left tific breakthroughs, and I by Newton's centuries-old of getting a more solid under- With his discoveries about standing of his theories and $E = mc^2$ and the existence life. For the purpose of this of photons, he laid the program, that meant learn- groundwork for atomic ing about the interplay be- bombs and quantum metween his personal, social, chanics. Einstein ended and political life with his his life with an unfinished scientific breakthroughs. search for a unified theory Einstein dropped his first of the universe, something batch of serious scientif- still open for us to resolve ic insights in 1905, and he today. In the spring, I'll shared his game-changing continue reading through General Theory of Rela- the sources I've found tivity ten years later. The at Cornell's libraries and collection of books held learning about Einstein's

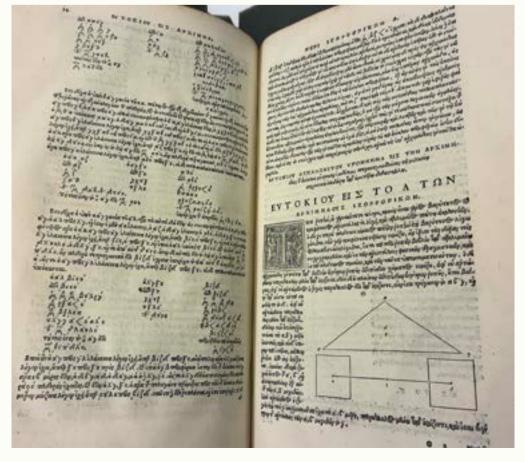
Einstein was Right

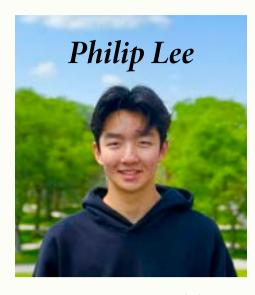

I chose Einstein as my lumi- I had initially chosen Newnary. He is one of the greatest ton, but I quickly switched to and best known scientists in Einstein because of my fashistory for his work on Spe- cination with time dilation cial Relativity, General Rel- after watching Interstellar. ativity, Brownian Motion, For most of the time at Cor-

and the Photoelectric Effect. nell, I chose to focus on un-

General Relativity, which is a highlights the fact that Eintheory that describes gravity stein was a true genius, since as the curvature of spacetime his theory predicted what we rather than a force. The most had not yet observed. In the fascinating thing I learned spring, I'm most excited to about him during my time learn more about his philoswas that Einstein had added ophies, especially on humana Cosmological Constant to ism, and how they affected his theory of General Rela- his work. tivity in order to make the model consistent with the notion that the Universe was unchanging. However, later on, it was discovered that the Universe is indeed expanding and his original theory is correct and no fudge factor is needed. While this finding wasn't a key insight into his personal life, nor one of

derstanding the math behind his major contributions, it

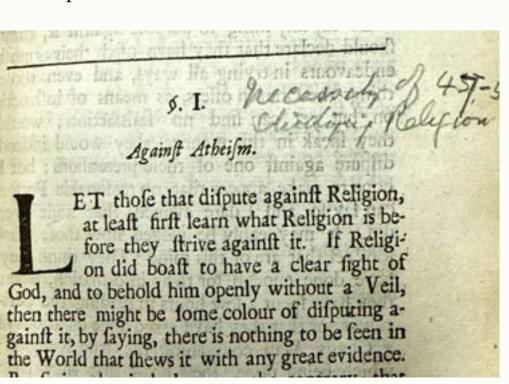

Un-Archiving Archimedes

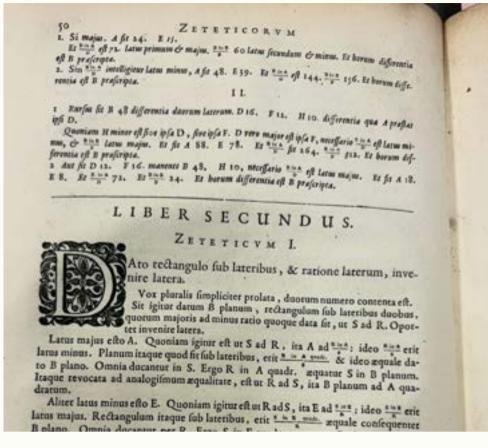

I chose Archimedes as my luminary of interest at Cornell. As a scholar of Classics and mathematics, I have always been intrigued by how great minds of antiquity conceived mathematical notions that laid the foundation for modern technological feats. Naturally, Archimedes struck me as the prime choice. As a native of then-Greek Syracuse

BC, he made profound con- ed a fascinating experience of es from which Archimedes' tributions to mathematics, archival study in which I was works sprung enriched my physics, and engineering by challenged to understand his understanding of the histoproposing laws of mechan- work in a similar mode as it ry and legacy of the ancient ics and estimating volumes had inspired later Renais- intellectual tradition, which and areas of various geomet- sance and Enlightenment I hope will invigorate my rical shapes by applying the thinkers like Galileo, New-study of Classics at Hotchkiss idea of infinitesimals and the ton, and Leibniz. Further, and beyond. method of exhaustion, which anticipated integral calculus by two thousand years.

I dedicated much time at the Rare Books and Manuscripts Collections, where I examined 16th- through 18th-century compilations of Archimedes' works scribed in Ancient Greek and Latin. Analyzing authentically preserved forms of Archimedes' diagrams and writings firsthand in conjunction with edited, published modern

in Sicily in the 3rd century English compilations yield- investigating the social forc-

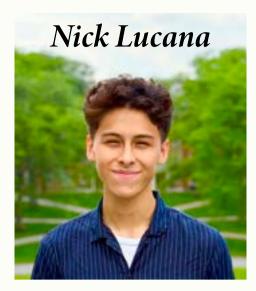




Geometry, Gambling, and God

My research was on Blaise Pascal, a French mathematician, physicist, and philosopher. Pascal was a polymath, devising Pascal's Theorem and Pascal's Law while making significant contributions to fluid mechanics, probability theory, and the comprehension of Pascal's Triangle. What initially intrigued me was his philosophical reasoning, specifically Pascal's Wager: a philosophical argument proving the rationality behind believing in God. While conducting more research, I was particularly fascinated by Pascal's probability theory and subsequent utilization of his triangle, which I found provides practical implementations when

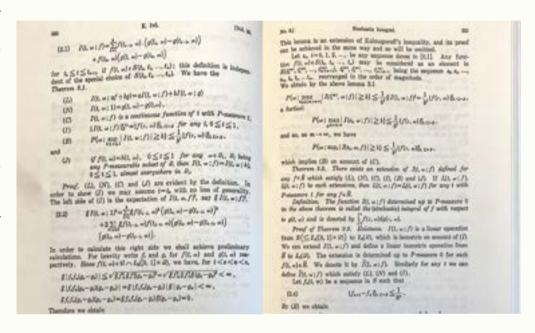
determining chance in our everyday lives. The Math and Olin libraries provided great resources that helped illustrate Pascal's numerous concepts and provided additional insight into the environmental factors that enabled him to conduct his studies. I've gotten the privilege to search through the archives where I obtained access to his work. In my most recent session, I examined his multiple essays and treatises along with a set of letters exchanged by Pascal and Fermat where they attempted to solve gambling problems utilizing their probability theory prototypes. At another archival session, I looked through some of Pascal's socalled miscellaneous writings along with his written thoughts regarding his philosophical and religious beliefs. I've enjoyed my studies in Cornell and I look forward to further examining my resources this coming year.


Latin to Algebra: The Mathematical Legacy of Viète

knowns.

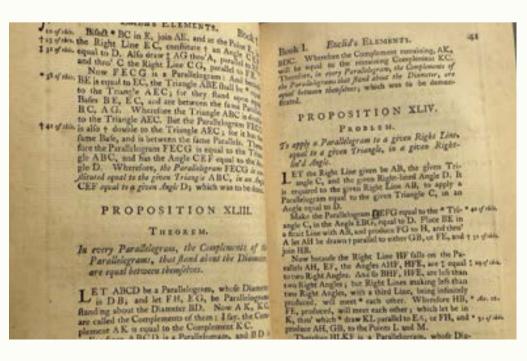
To look at primary sources, ing my paper for next spring. I visited the Rare Books and Manuscripts Collections at Cornell which had two volumes of his original Opera Mathematica. I examined the original Latin and photographed and translated pages that seemed interesting. While his book included much interesting

After switching my person information on geometry, a few times, I settled on logic, Gregorian Calendar, François Viète, who was a and angular sections, my mathematician known as research led me to focus on the father of symbolic alge- his algebraic discoveries, bra. I was particularly in- which had the most lasting trigued that although Viète effect on the development was French, he wrote all of of mathematics. Hence, I his mathematical work in focused on his introduction Latin which was the aca- of letters as variables, Viète's demic language of his time. formulas (the relationship One of his most fascinating between the coefficients of contributions was that he a polynomial and the sums introduced symbolic nota- and products of its roots), tion, using consonants for and his infinite product for knowns and vowels for un- ϖ . There is still so much to uncover about Viète's math and I look forward to writ-



The Architecture of Uncertainty

My research at the Cornell Mathematics Library and Rare Books and Manuscripts Collections centers around one of the leading Japanese mathematicians of the 20th century, Kiyoshi Itô. Known as the father of stochastic analysis, Itô reshaped how we understand randomness with stochastic differential equations (SDEs) and what


is now known as Itô calculus. terestingly, his work was no- deeper into the sources I've ing through his publications, translated work from Japanese, I became increasingly intrigued by the depth of what defines a stochastic process. Within that process lies time evolution and state space, with Itô's work in the most confusing realm: continuous state space—an uncountably infinite number of possible states in a system that evolves randomly over time. Yet, in-

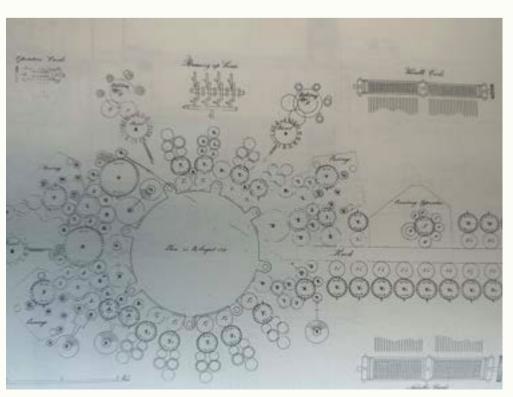
His work is primarily used in where near as appreciated at already found and strengthquantitative finance, phys- the time of its discovery. For en my understanding of the ics, and biology to model context, Itô's infamous paper mathematical previously inexplicable phe- On Stochastic Processes was behind stochastic processes. nomena such as Brownian published during World War It has been truly fascinating motion. My initial interest in II, with limited communicato see how finance, mathehim stemmed from my cu- tion to the Western world. I matics, and engineering have riosity in both management am extremely grateful to have intersected in the work of and technology. Rummag- had the opportunity to be- Itô, building on the legacy of gin early research on Itô and mathematicians before him. university lecture notes, and am excited for the upcoming school year, where I will dive

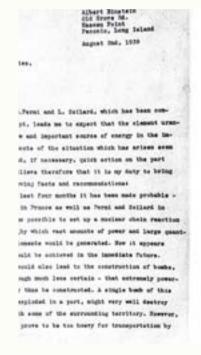
Aristotle's Legacy: How **Structure Endures Error**

Initially interested in logic, I chose to research mathematician, physicist, and philosopher Aristotle, often referred to as the "father of logic." At Cornell, I began exploring the intellectual legacy of Aristotle with a particular focus

on his work in the fields of shape foundational geometlogic, mathematics, and phys- ric principles and the develics. As part of this research, I opment of later, more rigorexamined Euclid's Elements ous scientific theories. I also at Cornell's Rare Books and engaged with more modern Manuscripts Collections to interpretations of Aristotle's understand how Aristotle's work that highlight the enlogical principles, such as the during influence of his ideas use of axioms and demon- across several disciplines, as strative reasoning, helped well as older sources within the Mathematics Library that critiqued his scientific theories as fundamentally flawed. Early in my research, I became especially interested in how many of Aristotle's theories, particularly in mathematics and physics, were later proven incorrect. This led me to shift my focus toward examining the root of his inaccuracies and the lessons we

can learn from his errors in process and result. My goal is to continue analyzing both the strengths and flaws


in his thinking to show that Aristotle's true legacy lies not just in his claims, but in his methods—and what they reveal about the importance of demonstrative, disciplined reasoning over dogma and tradition.

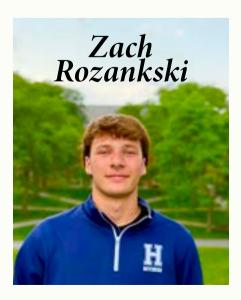


Ada Lovelace, the **Mother of Computing**

I chose to center my research around the life and work of Ada Lovelace, which also allowed me to follow the evolution of early computers. While at the Cornell Mathematics library, I traced the origins of computing back to the French textile industry and the invention of the jacquard loom—an early punchcard system that used sequences of circular holes to encode complex machine-woven patterns. It was Lovelace's notes on the Jacquard loom as well as another early computer, Charles Babbage's analytical engine, that served as some of the

first computer programs and changed the trajectory of computing beyond simple calculations. I found the Mathematics library to be rich with detailed blueprints and diagrams of the analytical engine. Since the engine was never completed, the drawings were instrumental in helping me understand the machine's mechanics as well as the process of transforming Lovelace's punched code into complex calculations. I was also able to access a number of books containing transcripts of Lovelace's These included thoughts that were vastly influential on the work of Alan Turing as well as our current understanding of artificial intelligence and its capacity for sentience. For example, her objection that while opportunities for computing are limitless, a computer has "no pretensions whatever to originate anything. It can do whatever we know how to order it to perform."

while the most important source of oresites to Delgison Stages. In view of this estuation you may think it desirable to contact neintained between the Administration and the of physicists working on chain reactions in invertee. Our poses of achieving this might be for you to entried with this took a who has your confidence and who could perhane serve in an ineff especity. His tack might comprise the following a) to approach dovernment Departments, keep them informed further development, and just formest recommodations for devers giving particular attention to the problem of securing a supply ium are for the Halted States; b) to speed up the experimental work, which is at p ried on within the limits of the budgets of University Laborator provising funds, if such funds be required, through his contacts private persons who are willing to make contributions for this or and perhaps also by obtaining the co-operation of industrial labor which have the necessary equipment. I understand that dermany has normally storout the sale of a from the fuesheelswakian mines which she has taken over. That size have taken such early action might perhaps be understood on the cr that the son of the German Under-Secretary of State, ran Telesion attached to the Raiser-Wilhelm-Institut in Jerlin where some of th American work on urantum is now being reposited. (Albert Epsetsin)

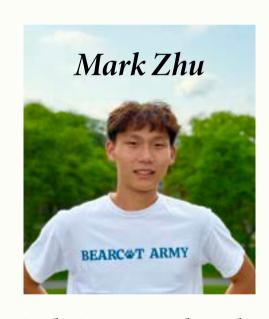

Einstein Beyond Equations

contributions and and social contexts of his Einstein was born. life shaped his work.

Working alongside my my research in the Spring peers, Crea Kibar and and delve deeper into the Dwyer Illick, who also mathematical chose Einstein as their tions behind Einstein's luminary, I began by un- theories. My final research derstanding his greatest paper will combine these theories, such as special aspects and showcase all relativity and general rel- I have learned in the proativity. As I became more cess. aware of how complex and revolutionary Einstein's theories were, I also began to wonder about the effect they had on society. This led me to Cornell's Math Library and Rare Books and Manuscripts Collections, where I searched for direct sources covering both Einstein's theo-

During my time at Cor- ries and the reactions they nell, I chose to research provoked. I found that his Albert Einstein-not only greatest works emerged for his accomplishments in the early 20th centuto ry which was marked by physics and mathematics, World War I and a rising but also to explore how tide of antisemitism, espethe personal, political, cially in Germany, where

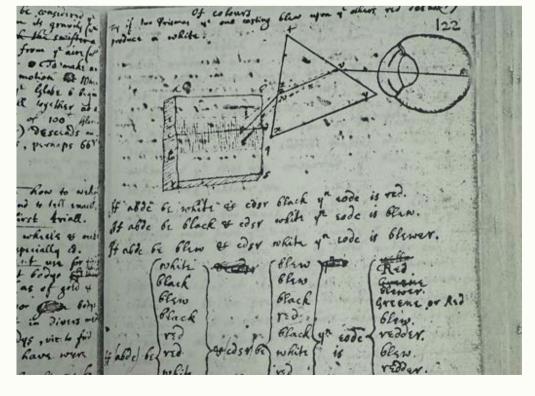
> I am excited to continue explana-


Descartes' Mathematical **Exploits**

I started my research project on Descartes by gathering secondary sources and

primary texts through the to mathematics, and how he as the standard form of repty of Descartes' contributions showed how equations such

Cornell Library Catalogue. was able to create common- resenting straight lines and I had known of his philo- ly used mathematical con- algebraic methods could be sophical contributions, so I cepts such as Cartesian co- used to solve classical probfound his impact as a mathe- ordinates. To answer these lems of tangents and intermatician even more interest- questions, I traced social sections. In the spring, I hope ing and impressive. I started order and academic fund- to have a better conceptual with comprehensive biog- ing in seventeenth-century understanding of analytical raphies on the University of Europe, examined his family geometry to recreate some of St. Andrews Math History background and education- Descartes' work. MacTutor site to build basic al influences, and mapped knowledge. I gathered specif- his collaborations with other ic volumes and texts from the mathematicians like Fermat. Olin Library, Math Library, He invented analytic geomand Rare Books and Manu- etry by introducing a coorscripts Collections, though dinate system that translated many were in French and geometric curves into alge-Latin. My research was braic equations. In his 1637 structured around the novel- treatise La Géométrie, he


God, Gravity, and Apple: A Look Inside Newton's Manuscripts

I chose Isaac Newton as my Mathematician of interest at Cornell because I wanted to learn more about how his religious beliefs influenced his scientific work. Cornell also has numerous resources about Newton both in the Rare Books and Manuscripts Collections and the Math Library. Isaac Newton

mathematician, every motion we see around on motion and referenced us – from celestial motion to the motion of everyday objects like an apple dropping from a tree.

I spent much time in the Cornell RMC, examining Newton's 17th-century works in a blend of ancient Greek, Latin, and English. I was intrigued by his thought process behind the three laws of motion. One of the works that

was a 17th-century English I investigated was Newton's Descartes' ideology of inerphysicist, Notebook from his days at tial motion in his creation of and opticist who is consid- Trinity College. I used AI the first law of motion. My ered the founding father of to translate the manuscript future plan regarding Newmodern science, classical into English, and discov- ton in the spring course is to mechanics, optics, and cal- ered that Newton's notes had further unpack his physicist culus. Through inventing deep theological roots. He contributions to the scientifthe three laws of motion and believed nature's laws were ic world, specifically focusuniversal law of gravitation, the design of God. Newton ing on understanding his dif-Newton was able to explain also rejected Aristotle's ideas ferential equations.

Special Events

Our time at the program outside of our research was about bonding, adventure, and making unforgettable memories with one another. Throughout our two weeks in Ithaca, we got to explore the town and beyond through several amazing trips.

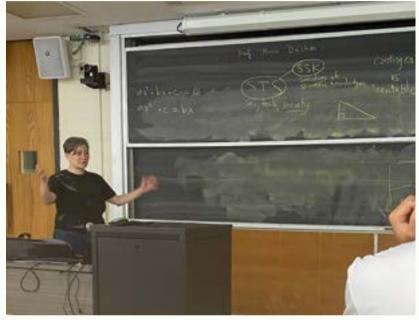
We began with a trip to Ithaca downtown for Circus Culture. There, the instructors taught us how to juggle, balance, and do acrobatics. Although we quickly came to realize that gravity always wins, we enjoyed cheering each other on, and laughing when we fell.

On our weekend off, we traveled to Six Flags at Darien Lake, NY. The bus ride itself felt like a party, with everyone playing music, games, and engaging in good conversation. Upon arrival, we teamed up to conquer the many roller coasters and games, enjoy some wings, fries, and the amusement park classic—Dippin Dots. Later in the afternoon, the group enjoyed the rides and slides within the water park. The day was filled with smiles, laugher, screams, and energy—the Scholars would surely name the trip a highlight. Upon coming back, we enjoyed Chinese food and poke

bowls in the common room!

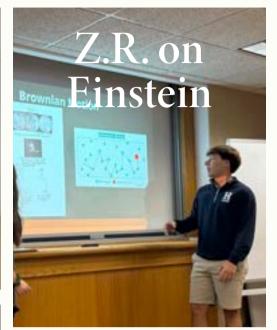
Nature had its own way of wowing us, particularly during our visit to the Robert H. Treman State Park to see one of Ithaca's famous gorges, Enfield Glen. The views of the waterwall were breathtaking, and the trails wound through lush greenery. We paused to take it all in, taking group photos, wading in the water, playing volleyball, and skipping stones. The trip was a reminder of how beautiful Ithaca is, and how truly lucky we were to experience it together.

Finally, we several trips to Collegetown throughout our time at Cornell. We went out to eat an array of cuisines, attended Ithaca Pride, and went on bubble tea and 7-11 runs. These moments, small or big, helped turn our group of math scholars into a real community with so many unforgettable memories to take away.



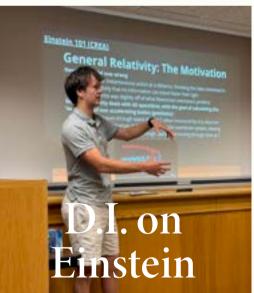
Guest Speakers

through the opportunity to meet and talk the intersection of mathematics and public with some of the Cornell Mathematics Depolicy. She educated the scholars on her recent partment's most inspiring figures, including research that explained how to draw electoral Dr. Spoon (Librarian of the Mathematics Li-districts to achieve a fair outcome in a dembrary), Professor Tara Holms (Head of Cor- ocratic election. And finally, Professor Riley nell's Mathematics Department), Professor visited the scholars as a guest during one of Moon Duchin, Professor Lionel Levine, and their afternoon math lectures, where he dis-Professor Timothy Riley. Professor Holms cussed "Big Numbers" and his research into kindly greeted us on the first day of our ar- geometric group theory. Scholars played a chival research, giving us a tour around the game where they had to avoid making monolibraries we would be using, explaining the chrome triangles, learned about Hydra, and role of mathematical principles in 3D-print- thought about how to express the greatest ed fidgets, and narrating some of Cornell's whole number in only words and mathematlong-standing, unique traditions. Later, Pro- ical notion—a feat much harder than we had fessor Levine delivered a thought-provoking first thought! lecture on how math helps us think about AI safety. During the lecture, Professor Levine In retrospect, we left Cornell not just with to human extinction. The next day, professor share their time and passions with us.


Our time at the program was made special Duchin discussed her unique career path at

challenged students to engage in discussions new knowledge, but with a deeper excitement debating the moral status of AI, what "con- for where math can take us, along with gratitrol" over AI really means, and if it could lead tude for the special guests who were willing to

Final Presentations



Contributor Credits
Texts—All Scholars & Intstructors
Photos—All Scholars & Instructors

Graphics—Nick Lucana & Sia Reddy Editing—Nick Lucana & Sia Reddy Layout & Organization—Nick Lucana